S o f t w a r e     f o r     a u t o m a t i c     c r e a t i o n     o f     m o d e l s     u s i n g     p a r a m e t r i c     d a t a

123456789_123456789_1123456789Concrete Bridge Software 

Basis of Design & Documentations
ICDAS YouTube Channel   ICDAS COB 2017.00R

Road Bridge Model Examples
  123456789_123456789_123456789_123456789_123456789_123123456789_123456789_123456789_123456789_123456789_123456789_12345

 

Concrete Bridge

Model Examples



Model description



Input



Geometry model



Analysis model



Landscape model



ICDAS Basis of Design



Workflow of Software



Additional features



Rendering & Animation 



Case study


Subscription


































123456789_123456789_1
123456789

A. Projecting Documentation

A1. Bridge location

The map and codes of coordinate systems below are used in Google Earth & Kortforsyningen Denmark

 





Figure:   Map and codes of coordinate systems UTM84

EPSG: European Petroleum Survey Group

UTM : Universal Transverse Mercator

WGS: World Geodetic System

Similar for the South Zone 29S, 30S, 31S ... Code UTM84-29S, -30S, -31S... EPSG code 32729, 32730, 32731...

 

 

 








 

 

 

 

A2. Elements


A3. Principle of the bridge


A4. Partner relation


A5. Agreements


A6. Enclose and annex

 

 

 

B. Basis of Design

B1. Design background (Eurocodes)

Railway bridge geometry

Ballast height 900mm is including 178mm height of rail cf. 

BaneDanmark


 

B2. Materials

Concrete 40MPa

Reinforcement cover 50±5mm

 

Railway bridge fatigue

ΔσRsk=162.5MPa is the stress range at 10E6 cycles in reinforcing steel. cf.

Eurocode 2 Design of concrete structures DS/EN 1992-1-1+AC:2008,

Table 6.3 (Straighgt and bent bars)


Multiplication factor 1.15 on heavy traffic, cf. BaneDenmark BN159-4, p.34


 

B3. Loading & Load Combinations


Railway bridges

Dynamic factor F as F(2) for carefully maintained track, or F(3) for standard maintenance,  cf. Eurocode 1 Part 2: Traffic loads on bridges EN 1991-2:2003 p.78


  Footbridges

  "Wind actions and thermal actions need not be taken into account simultaneously…" cf. DS-EN 1990/A1 p. 10


  Horizontal forces in VD2015 Figure B2.1 to B2.4 for Footway Bridges are acting in the longitudinal direction (the bridge direction), where

 

  Qflk = 10% of the total of UDL, or

  Qflk = 60% of the total weight of service vehicle

 

 

  cf. EN1991-2:2003 5.4(2) Traffic loads on bridges



B4. Principle of limit states

Ultimate Limit States (ULS)

Serviceability Limit States (SLS)

Accidental Limit State (ALS)

Fatigue Limit States (FLS)

 news: MCB. ICDAS Basis of Design.jpg
123456789_123456789_1123456789123456789_123456789_123456789_123456789_123456789_123456789_123456789_1234567123456789_123456789_123456789_123456789_

 

123456789_123456789_1123456789B5. Design Criteria ULS

 

   

ULS Load Combination


Maximum concrete compression stress sc < 0.70 fcd (for axial N dominant comb. cases)

Maximum concrete compression stress sc < 0.60 fcd (for bending M dominant comb. cases)
Maximum reinforcement tension stress ss < fyd

cf. Eurocode 2 Design of concrete structures DS/EN 1992-1-1+AC:2008


Shear at the interface between concrete case at different times (Forskyldning i støbeskel)

cf. Eurocode 2 Design of concrete structures DS/EN 1992-1-1+AC:2008, p.92

123456789_123456789_112345678912345123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789

 

123456789_123456789_1123456789B6. Design Criteria SLS

 

   

SLS Quasi Permanent Load Combination

For prestressing cables, no concrete tension stress from top to bottom

of deck cross section for section perpendicular to the cables
 
Concrete structure & reinforcement
Maximum upward vertical deformation uz < L/250 (quasi-permanent loading)
Maximum downward vertical deformation uz < L/500 (quasi-permanent loading)
cf. Eurocode 2 Design of concrete structures DS/EN 1992-1-1+AC:2008, p.126
 
Maximum concrete compression stress sc < 0.45 fck
cf. Eurocode 2 Design of concrete structures DS/EN 1992-1-1+AC:2008, p.118 
123456789_123456789_112345678912345123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789

 

   

SLS Frequent Load Combination


Crack in concrete (reinforcement verification)

Crack width wk<0.3mm for deck, wk<0.2mm for edge beams

cf. Eurocode 2 Design of concrete structures DS/EN 1992-1-1+AC:2008, p.119,123

123456789_123456789_112345678912345123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789

 

   

SLS Characteristic Load Combination


Road bridges

Criteria regarding deformation and vibration

cf. Eurocode Basis of structural design DS/EN 1990/A1, Annex A2 p.23


Railway bridges

Maximum vertical deformation due to rail traffic uz < L/600 (characteristic vertical loading)

cf. Eurocode Basis of structural design DS/EN 1990/A1, Annex A2 p.27

 

Maximum twist of deck in [mm/3m]: 4.5 (V£120),  3.0 (120<V£200), 1.5 (V>200)

for characteristic values of LM71, SW/0, SW/2 multiplies by F and a,

cf. Eurocode Basis of structural design DS/EN 1990/A1, Annex A2 p.27

 

Concrete structure & reinforcement

Maximum concrete compression stress sc < 0.60 fck

Maximum reinforcement tension stress ss < 0.80 fyk

cf. Eurocode 2 Design of concrete structures DS/EN 1992-1-1+AC:2008, p.118


Maximum cable tension stress sp < 0.75 ftk

123456789_123456789_112345678912345123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789

 

123456789_123456789_1123456789B7. Design Criteria ALS

 

123456789_123456789_1123456789B8. Design Criteria FLS

 

 

123456789_123456789_1123456789

C. Static Documentation


C1. Introduction


C2. Summary of results


C3. FEM model, construction phases & support conditions

 

C4. Loads on bridge & loads combinations


C5. Static analysis in ULS & SLS

 

      C5.1 Maximum reaction at foundation, ULS

      C5.2 Deflections control, ULS & SLS

      C5.3 Stress capacity verification, SLS Quasi

             (Here prestressed cables capacity verification if any)

      C5.4 Reinforcement capacity verificationULS & SLS

      C5.5 Concrete capacity verificationULS & SLS

      C5.6 Shear capacity verificationULS & SLS


C6. Static analysis in ALS & FLS


C7. Dynamic analysis

 

C8. Appendixes 

  

 

 

123456789_123456789_1123456789

D. Design Documentation

 

D1. 3D landscape & bridge geometry

D1.1 3D landscape overpass and underpass (corridors)

D1.2 3D information model of bridge and geometry in details  


D2. 2D section drawings 

D2.1 2D section drawings from 3D information model (dimension)

 

 

123456789_123456789_1123456789

E. References

Vejledning til Belastnings - og Beregningsgrundlag for Broer, Vejregler April 2015
Lastmodeller for klassificering og bæreevnevurdering, Vejdirektoratet 1. Juni 2013

Search on Danish National Annex Eurocode

BaneDanmark List of norms 

Belastnings- og beregningsforudsætninger for sporbærende broer og jordkonstruktioner, BN1-59-4 (Nov 2010)

 

Concrete bridges, List of all structures


Updated 15-03-2016

 

123456789_123456789_1123456789
ICDAS  •  Hans Erik Nielsens Vej 3  •  DK-3650 Ølstykke  •   
E-mail: th@icdas.dk   •  Tel.: +45 20 20 33 78  •  CVR no.: 34436169 
  123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_