S o f t w a r e     f o r     a u t o m a t i c     c r e a t i o n     o f     m o d e l s     u s i n g     p a r a m e t r i c     d a t a

123456789_123456789_1123456789Concrete Bridge Software 

Basis of Design & Documentations
ICDAS YouTube Channel   ICDAS COB 2017.00R

Road Bridge Model Examples


Concrete Bridge

Model Examples

Model description


Geometry model

Analysis model

Landscape model

ICDAS Basis of Design

Workflow of Software

Additional features

Rendering & Animation 

Case study



A. Projecting Documentation

A1. Bridge location

The map and codes of coordinate systems below are used in Google Earth & Kortforsyningen Denmark


Figure:   Map and codes of coordinate systems UTM84

EPSG: European Petroleum Survey Group

UTM : Universal Transverse Mercator

WGS: World Geodetic System

Similar for the South Zone 29S, 30S, 31S ... Code UTM84-29S, -30S, -31S... EPSG code 32729, 32730, 32731...








A2. Elements

A3. Principle of the bridge

A4. Partner relation

A5. Agreements

A6. Enclose and annex




B. Basis of Design

B1. Design background (Eurocodes)

Railway bridge geometry

Ballast height 900mm is including 178mm height of rail cf. 



B2. Materials

Concrete 40MPa

Reinforcement cover 50±5mm


Railway bridge fatigue

ΔσRsk=162.5MPa is the stress range at 10E6 cycles in reinforcing steel. cf.

Eurocode 2 Design of concrete structures DS/EN 1992-1-1+AC:2008,

Table 6.3 (Straighgt and bent bars)

Multiplication factor 1.15 on heavy traffic, cf. BaneDenmark BN159-4, p.34


B3. Loading & Load Combinations

Railway bridges

Dynamic factor F as F(2) for carefully maintained track, or F(3) for standard maintenance,  cf. Eurocode 1 Part 2: Traffic loads on bridges EN 1991-2:2003 p.78


  "Wind actions and thermal actions need not be taken into account simultaneously…" cf. DS-EN 1990/A1 p. 10

  Horizontal forces in VD2015 Figure B2.1 to B2.4 for Footway Bridges are acting in the longitudinal direction (the bridge direction), where


  Qflk = 10% of the total of UDL, or

  Qflk = 60% of the total weight of service vehicle



  cf. EN1991-2:2003 5.4(2) Traffic loads on bridges

B4. Principle of limit states

Ultimate Limit States (ULS)

Serviceability Limit States (SLS)

Accidental Limit State (ALS)

Fatigue Limit States (FLS)

 news: MCB. ICDAS Basis of Design.jpg


123456789_123456789_1123456789B5. Design Criteria ULS



ULS Load Combination

Maximum concrete compression stress sc < 0.70 fcd (for axial N dominant comb. cases)

Maximum concrete compression stress sc < 0.60 fcd (for bending M dominant comb. cases)
Maximum reinforcement tension stress ss < fyd

cf. Eurocode 2 Design of concrete structures DS/EN 1992-1-1+AC:2008

Shear at the interface between concrete case at different times (Forskyldning i støbeskel)

cf. Eurocode 2 Design of concrete structures DS/EN 1992-1-1+AC:2008, p.92



123456789_123456789_1123456789B6. Design Criteria SLS



SLS Quasi Permanent Load Combination

For prestressing cables, no concrete tension stress from top to bottom

of deck cross section for section perpendicular to the cables
Concrete structure & reinforcement
Maximum upward vertical deformation uz < L/250 (quasi-permanent loading)
Maximum downward vertical deformation uz < L/500 (quasi-permanent loading)
cf. Eurocode 2 Design of concrete structures DS/EN 1992-1-1+AC:2008, p.126
Maximum concrete compression stress sc < 0.45 fck
cf. Eurocode 2 Design of concrete structures DS/EN 1992-1-1+AC:2008, p.118 



SLS Frequent Load Combination

Crack in concrete (reinforcement verification)

Crack width wk<0.3mm for deck, wk<0.2mm for edge beams

cf. Eurocode 2 Design of concrete structures DS/EN 1992-1-1+AC:2008, p.119,123




SLS Characteristic Load Combination

Road bridges

Criteria regarding deformation and vibration

cf. Eurocode Basis of structural design DS/EN 1990/A1, Annex A2 p.23

Railway bridges

Maximum vertical deformation due to rail traffic uz < L/600 (characteristic vertical loading)

cf. Eurocode Basis of structural design DS/EN 1990/A1, Annex A2 p.27


Maximum twist of deck in [mm/3m]: 4.5 (V£120),  3.0 (120<V£200), 1.5 (V>200)

for characteristic values of LM71, SW/0, SW/2 multiplies by F and a,

cf. Eurocode Basis of structural design DS/EN 1990/A1, Annex A2 p.27


Concrete structure & reinforcement

Maximum concrete compression stress sc < 0.60 fck

Maximum reinforcement tension stress ss < 0.80 fyk

cf. Eurocode 2 Design of concrete structures DS/EN 1992-1-1+AC:2008, p.118

Maximum cable tension stress sp < 0.75 ftk



123456789_123456789_1123456789B7. Design Criteria ALS


123456789_123456789_1123456789B8. Design Criteria FLS




C. Static Documentation

C1. Introduction

C2. Summary of results

C3. FEM model, construction phases & support conditions


C4. Loads on bridge & loads combinations

C5. Static analysis in ULS & SLS


      C5.1 Maximum reaction at foundation, ULS

      C5.2 Deflections control, ULS & SLS

      C5.3 Stress capacity verification, SLS Quasi

             (Here prestressed cables capacity verification if any)

      C5.4 Reinforcement capacity verificationULS & SLS

      C5.5 Concrete capacity verificationULS & SLS

      C5.6 Shear capacity verificationULS & SLS

C6. Static analysis in ALS & FLS

C7. Dynamic analysis


C8. Appendixes 





D. Design Documentation


D1. 3D landscape & bridge geometry

D1.1 3D landscape overpass and underpass (corridors)

D1.2 3D information model of bridge and geometry in details  

D2. 2D section drawings 

D2.1 2D section drawings from 3D information model (dimension)




E. References

Vejledning til Belastnings - og Beregningsgrundlag for Broer, Vejregler April 2015
Lastmodeller for klassificering og bæreevnevurdering, Vejdirektoratet 1. Juni 2013

Search on Danish National Annex Eurocode

BaneDanmark List of norms 

Belastnings- og beregningsforudsætninger for sporbærende broer og jordkonstruktioner, BN1-59-4 (Nov 2010)


Concrete bridges, List of all structures

Updated 15-03-2016


ICDAS  •  Hans Erik Nielsens Vej 3  •  DK-3650 Ølstykke  •   
E-mail: th@icdas.dk   •  Tel.: +45 20 20 33 78  •  CVR no.: 34436169