S o f t w a r e     f o r     a u t o m a t i c     c r e a t i o n     o f     m o d e l s     u s i n g     p a r a m e t r i c     d a t a

123456789_123456789_1123456789Cable-stayed Bridge Software 

Basis of Design & Documentations
ICDAS YouTube Channel   ICDAS CSB 2018.00R

Geometry Model 
  123456789_123456789_123456789_123456789_123456789_123123456789_123456789_123456789_123456789_123456789_123456789_12345

 

Cable-stayed Bridge

Model Examples

 


Model description

 


Input

 


Geometry model

 


Analysis model

 


Landscape model

 


ICDAS Basis of Design

 


Workflow of Software


 

Additional features



Rendering & Animation



Case Study and 
Research

 

 

 

Subsciption 

 

 

 

 

 

 

 

 

 

 

 

 

A. Projecting Documentation

A1. Bridge location


A2. Elements


A3. Principle of the bridge


A4. Partner relation


A5. Agreements


A6. Enclose and annex

 

 

 

B. Basis of Design

B1. Design background (Eurocodes)


B2. Materials

Concrete 40MPa

Reinforcement cover 50±5mm

 

B3. Loading & Load Combinations


Railway bridges

Dynamic factor F as F(2) for carefully maintained track, or F(3) for standard maintenance,  cf. Eurocode 1 Part 2: Traffic loads on bridges EN 1991-2:2003 p.78



B4. Principle of limit states

Ultimate Limit States (ULS)

Serviceability Limit States (SLS)

Accidental Limit State (ALS)

Fatigue Limit States (FLS)

 news: MCB. ICDAS Basis of Design.jpg
123456789_123456789_1123456789123456789_123456789_123456789_123456789_123456789_123456789_123456789_1234567123456789_123456789_123456789_123456789_

 

123456789_123456789_1123456789B5. Design Criteria ULS

 

   

ULS Load Combination


Maximum concrete compression stress sc < 0.70 fcd (for axial N dominant comb. cases)

Maximum concrete compression stress sc < 0.60 fcd (for bending M dominant comb. cases)
Maximum reinforcement tension stress ss < fyd

cf. Eurocode 2 Design of concrete structures DS/EN 1992-1-1+AC:2008

123456789_123456789_112345678912345123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789

 

123456789_123456789_1123456789B6. Design Criteria SLS

 

   

SLS Quasi Permanent Load Combination

For prestressing cables, no concrete tension stress from top to bottom

of deck cross section for section perpendicular to the cables
 
Concrete structure & reinforcement
Maximum upward vertical deformation uz < L/250 (quasi-permanent loading)
Maximum downward vertical deformation uz < L/500 (quasi-permanent loading)
cf. Eurocode 2 Design of concrete structures DS/EN 1992-1-1+AC:2008, p.126
 
Maximum concrete compression stress sc < 0.45 fck
cf. Eurocode 2 Design of concrete structures DS/EN 1992-1-1+AC:2008, p.118 
123456789_123456789_112345678912345123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789

 

   

SLS Frequent Load Combination


Crack in concrete (reinforcement verification)

Crack width wk<0.3mm for deck, wk<0.2mm for edge beams

cf. Eurocode 2 Design of concrete structures DS/EN 1992-1-1+AC:2008, p.119,123

123456789_123456789_112345678912345123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789

 

   

SLS Characteristic Load Combination


Road bridges

Criteria regarding deformation and vibration

cf. Eurocode Basis of structural design DS/EN 1990/A1, Annex A2 p.23


Railway bridges

Maximum vertical deformation uz < L/600 (characteristic vertical loading)

cf. Eurocode Basis of structural design DS/EN 1990/A1, Annex A2 p.27


Concrete structure & reinforcement

Maximum concrete compression stress sc < 0.60 fck

Maximum reinforcement tension stress ss < 0.80 fyk

cf. Eurocode 2 Design of concrete structures DS/EN 1992-1-1+AC:2008, p.118

123456789_123456789_112345678912345123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789

 

123456789_123456789_1123456789B7. Design Criteria ALS

 

123456789_123456789_1123456789B8. Design Criteria FLS

 

 

123456789_123456789_1123456789

C. Static Documentation


C1. Introduction


C2. Summary of results


C3. FEM model, construction phases & support conditions

 

C4. Loads on bridge & loads combinations


C5. Static analysis in ULS & SLS

      C5.1 Maximum reaction at foundation, ULS

      C5.2 Deflections control, ULS & SLS

      C5.3 Stress capacity verification, SLS Quasi

             (Here prestressed cables capacity verification if any)

      C5.4 Reinforcement capacity verificationULS & SLS

      C5.5 Concrete capacity verificationULS & SLS

      C5.6 Shear capacity verificationULS & SLS


C6. Static analysis in ALS & FLS


C7. Dynamic analysis

C7.1 Natural mode shapes and frequencies

C7.2 Buffeting and vortex response

C7.3 Multimode coupled flutter and buffeting analysis

C7.4 Active/passive vibration control  

 

C8. Appendixes 

  

 

 

123456789_123456789_1123456789

D. Design Documentation

 

D1. 3D landscape & bridge geometry

D1.1 3D landscape overpass and underpass (corridors)

D1.2 3D bridge geometry in detail


D2. 2D section drawings 

D2.1 2D section drawings from 3D model (dimensions)

 

 

123456789_123456789_1123456789E. References

Vejledning til Belastnings - og beregningsgrundlag for vej- og stibroer Vejdirektoratet - Vejregelrådet, juli 2010
Lastmodeller for klassificering og bæreevnevurdering, Vejdirektoratet 1. Juni 2013

Cable-stayed bridges - List of all structures

 

123456789_123456789_1123456789ICDAS  •  Hans Erik Nielsens Vej 3  •  DK-3650 Ølstykke  •   E-mail: th@icdas.dk   •  Tel.: +45 29 20 33 78  •  CVR no.: 34436169